PROMENADE:

Platform for Resilient Multi-modal Mobility via Multi-layer Networks & <u>Real-time Big-Data Processing</u>

Angelo Furno LICIT (UDL, IFSTTAR, ENTPE), France Workshop on multi-source data analysis for mobility reconstruction November, 8th 2019

Today's agenda

- 09:00-09:30 Coffee break
- **09:30-10:00** Introduction of the PROMENADE project (Angelo, LICIT Researcher)
- **10:00-10:30** Zonal-speed estimation via mobile phone data (Manon, LICIT PhD student)
- **10:30-11:00** *Point on Orange data collection: problems and projects to come* (**Cezary, Dung**, Orange Labs)
- **11:00-11:45** *Mobile phone data analysis: state of the art and opportunities* (Marco, CNR-Italy Researcher)
- **11:45-12:15** Social segregation with CDR 2007 data (Lino, INSEE researcher)
- **12:15-13:30** Lunch
- **13:30-14:00** Home detection with CDR 2007 data and Stop Detection with Signalling data (**Zbigniew & Bruno**, Orange Labs)
- **14:00-14:30** *Human mobility and epidemic spreading* (**Stefania**, Orange Labs)
- **14:30-15:00** *Presentation of current results related to PROMENADE WP2* (Loïc, LICIT PhD student)
- **15:00-15:30** Discussion on future directions for WP2 (all)
- **15:30-15:45** Point on recruitment of postdocs/PhD students/stages (all)
- **15:45-16:00** Debriefing and conclusion (all)

DIOI 2 CONCERNING DATA-DRIVEN RESILIENT MOBILITY

Outline

1. Project Context

- Project Identity
- Research Team
- Research Goals
- Research Issues and Levers

2. Methodology and Implementation

- Research Axes
- WPs and Tasks
- Platform Architecture

3. Zoom on WP2

First Results (by Loic BONNETAIN)

2. PROJECT CONTEXT

Project Identity

- AAP ANR JCJC 2018
 - CES 22 Mobilité et systèmes urbains durables
- Duration
 - 3 years (scientific start on Feb. 2019)
 - 4 years-extension has been recently agreed
 - end by January 2023
- Budget
 - Project costs (including all human resources): 750k€
- CDD Resources associated to the project
 - 3 PhD students
 - 1 funded by ANR (Cecile DANIEL)
 - 2 funded by Ministere Transition Ecologique et Solidaire (ENTPE)
 - 18-months + 12-months postdoc
 - funded by ANR
 - Recruitement is on-going, but possibility to transform it into
 - a PhD Thesis
 - + 12 months postdoc

- Academic and Industrial Partners
 - University of Illinois at Chicago (US)
 - CNR-IEEIT (Italy)
 - INSA-Lyon, INRIA (France)
 - University of Sannio (Italy)
 - Orange Labs (France)

Research Team

Institution	Name	First name	Current position	Role & responsibilities in the project	Involvement (person. month)			
ENTPE (France)	FURNO	Angelo	Researcher	Principal Investigator; Project Coordinator; Contributor in all WPs; PhD co-director (EH, LB, ANR PHD)	27			
IFSTTAR-ENTPE (France)	el faouzi	Nour-Eddin	Research director, HDR	PhD director (EH, LB, ANR_PHD); Contributor WP0, WP1, WP2, WP3	9			
University of Sannio (Italy)	ZIMEO	Eugenio	Associate professor	PhD co-advisor (ANR_PHD); Contributor WP0, WP1, WP4	3			
CNR-IEEIT (Italy)	FIORE	Marco	Researcher, HDR	PhD co-advisor (LB); Contributor WP0, WP2	2			
INSA-Lyon <i>,</i> INRIA (France)	STANICA	Razvan	Associate Professor	PhD co-advisor (LB); Contributor WP0, WP2	1			
Orange Labs (France)	SMOREDA	Zbigniew	Sociologist, Researcher	Postdoc co-advisor (ANR_POST); Contributor WP0, WP2	1			
University of Illinois at Chicago (United States)	DERRIBLE	Sybil	Associate professor	PhD co-advisor (EH); Contributor WP0, WP1, WP3	3			
19.1.1.C			Phd Student					
ENTPE (France)	BONNETAIN	Loïc	(from Sept.'18)	Contributor WP0, WP2, WP4	36			
ENTPE (France)	HENRY	Elise	Phd Student (from Sept.'18)	Contributor WP0, WP3, WP4	36			
ANR-funded	DANIEL	Cecile	PhD Student (from Dec.'18)	Contributor WP0, WP1, WP4	36			
ANR-funded	TBD	TBD	Post-doc/Research Engineer (from Mid. 2020)	Contributor WP0, WP1, WP4	18			

Research Goals

• General Goal: contributing to resilient, efficient and sustainable urban mobility via novel data-driven scalable, real-time and extensible solutions in large-scale "smart" city environments

- Three sub-goals merged in an extensible platform
 - advanced modelling and understanding of the dynamic inter-relationships proper to the multi-modal transport offer via temporal multi-layer graphs and network mining
 - finer-grained and larger-scale dynamic estimation of travelers' demand, human presence and typical/atypical patterns via machine learning and multi-source data
 - quantification and improvement of the resilience of mobility networks subject to hardly predictable events via simulation of stress scenarios & adaptive control strategies

Research Questions and Levers (1)

- Can we more accurately and more dynamically estimate users' travel demand and mobility habits, even in real-time?
 - Highly variable mobility behaviors (popular route/mode choices, motifs + OD flows)
 - Multi-modality plays a central role for mobility in urban areas
- How to deal with that?
 - join the potential of massively-collected multi-source data
 - > e.g., **mobile phone data**, Floating Car Data, Smart-card data, taxi data, real-time feeds on traffic, ...
 - Ieverage most recent advances of ML with multi-source urban data
 - ▶ e.g., ensemble & multi-view learning, Bayesian approaches, deep learning, ...
 - Exploit the potential of parallel computing, big data and IoT technologies
 - e.g., Hadoop, Spark, Neo4J, lambda/kappa architectures, ...

Research Questions and Levers (2)

- Can we quantify, anticipate and reduce the impact of hardlypredictable events on multi-modal transport infrastructure?
 - Mobility highly vulnerable to weather events
 - Insufficient knowledge of mobility patterns in atypical situations
- How to deal with that?
 - complex networks as a light-weight modelling framework
 - > weighted attributed temporal graphs to jointly tracing the dynamics of both mobility offer and demand

simulation and stress testing to measure the impact of extreme events/daily perturbations
novel metrics in simulated contexts to dynamically characterize network resilience

- > adaptive control strategies to dynamically modify the offer and absorb the demand
 - Flexible deployment of alternative (multi-modal) mobility solutions in presence of perturbational

Research Questions and Levers (3)

- Can we support citizens and service providers with an efficient, scalable and extensible smart-city platform?
 - Strict non-functional requirements
 - Large-scale, high-frequency streams of IoT data
 - Highly heterogeneous business requirements
- How to deal with that?
 - Continuous integration of software development and operations
 - > OpenShift + Kubernetes (operations) + Helm (deployment) controllers to implement DevOps support

IoT and cloud-computing support for real-time data collection & online/offline processing

- > Artemis + Kafka + Apache Flink to perform IoT data stream-based analytics
- Artemis + Kafka + Neo4J + Spark to perform offline analytics

> Load distribution, parallelism and redundancy for strict non-functional requirements

Edge + Fog computing to support computation on the network edges, Spark for cluster-based computation

DIONICA CONCERNING

PROMENADE Recap: mission and novelty

• **Mission** of the PROMENADE project:

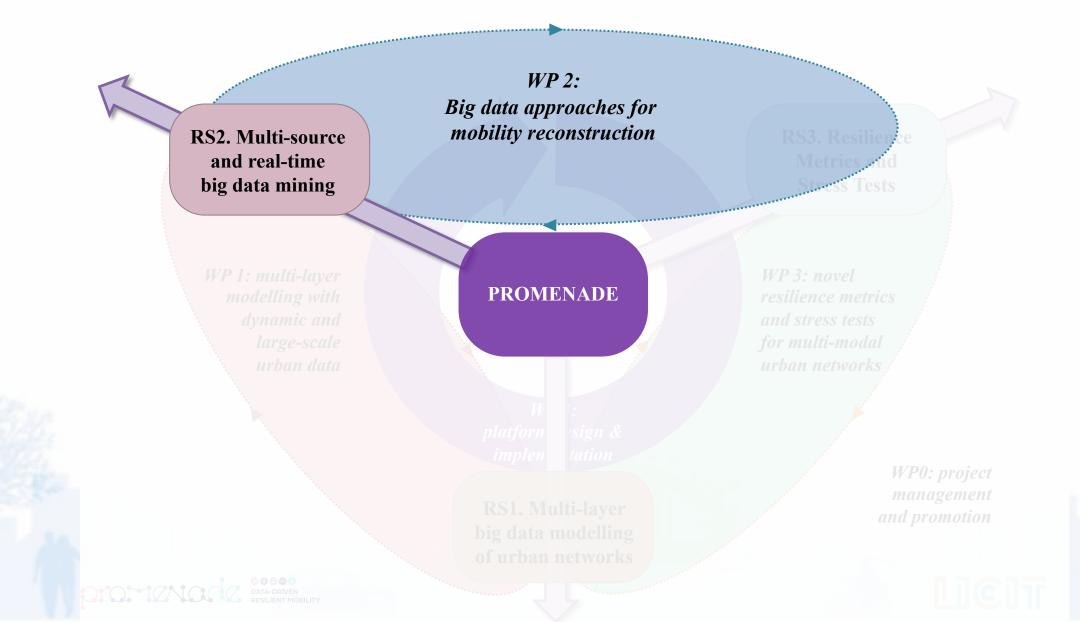
to devise a holistic, real-time, data-driven extensible platform for efficient, resilient and smart monitoring & management of multi-modal urban transport

• What's new?

- 1. Complex-networks modelling approach for large-scale smart cities dynamic data
 - to overcome static, topology-only, single-mode traditional models
- 2. Multi-source, real-time data analytical framework to improve mobility understanding
 - jointly leverage the potential of mobile phone data, real-time sensors' data, social network data
- 3. Resilience assessment and augmentation tools in multi-modal settings
 - stress, simulate, quantify and dynamic control strategies
- 4. Open-source extensible IoT-based, microservices-based monitoring platform
 - IoT, Fog, Cloud, DevOps, Steam-processing technologies

DIONICA DATA-DRIVEN RESILIENT MOBILITY

3. METHODOLOGY AND IMPLEMENTATION


PROMENADE: Three Research Axes (RS) and five WPs

WP 2: Big data approaches for mobility reconstruction **RS3.** Resilience **RS2.** Multi-source and real-time **Metrics and** big data mining **Stress Tests PROMENADE:** WP 3: novel WP 1: multi-layer **Platform for resilient** modelling with resilience metrics multi-modal urban dynamic and and stress tests mobility large-scale for multi-modal urban data urban networks **WP 4:** platform design & implementation WP0: project management **RS1.** Multi-layer and promotion big data modelling of urban networks

LICIT

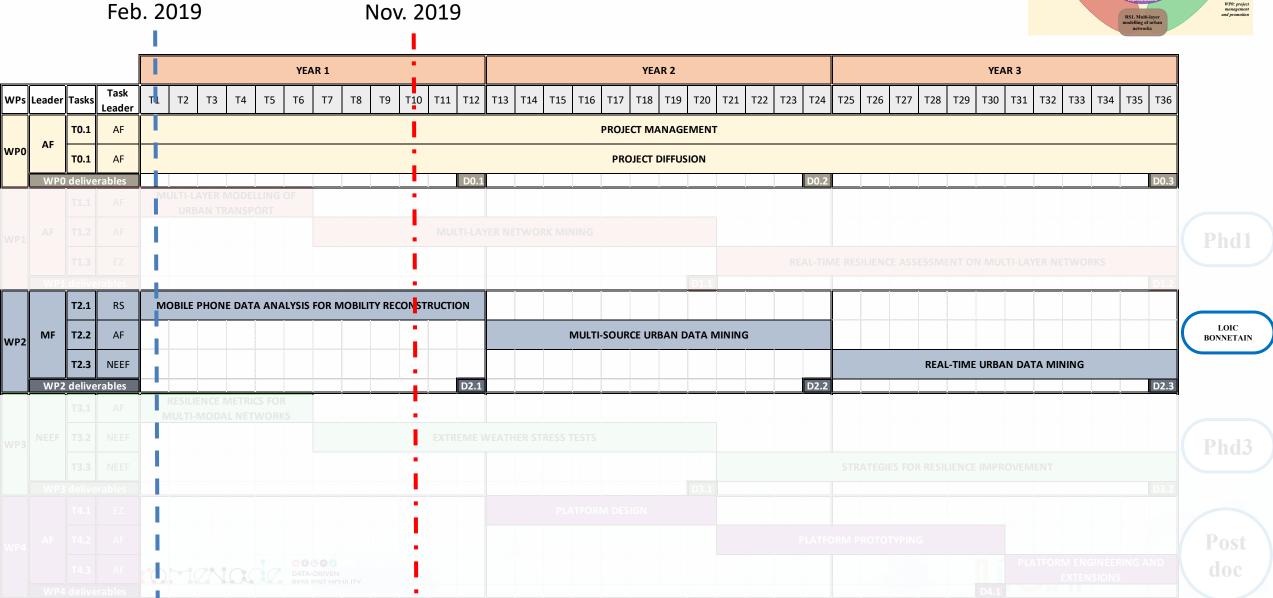
13

PROMENADE: Zoom on RS2/WP2

14

Gantt Diagram

Nov. 2019


Feb. 2019

									-0	-																			modelling of urban networks	m	
				1																											
				1	YEA	R 1										YEAR 2	:								١	ÆAR 3					
WPs	Leader	Tasks	Task Leader	ті т2 т3 т	T4 T5 T6	Т7	т8 т9	9 Т10	0 T11	. T12	T13	T14	T15	T16	T17 T	18 T1	.9 T20	T21 T22	2 Т23	T24	T25	T26	Т27	Т28 Т	29 ТЗ	0 T31	Т32	тзз тз4	4 T35 T	36	
		T0.1	AF						·					F	ROJECT	MANA	GEMEN	r						<u>.</u>				·			
WP0	AF	т0.1	AF	1				:							PROJE	CT DIFF	USION														
	WPO) delive	erables			-				D0.1	1									D0.2						-			D	0.3	
		T1.1		MULTI-LAYER MC URBAN TRAN						DOIL																					
WP1	AF	T1.2	AF						MU	JLTI-LAY	ER NI	etwori	K MIN	IING																(Phd1
		T1.3	EZ																RI	EAL-TIN	AE RESI	ILIENC	E ASSI	SSMEN		IULTI-LA	YER NI	TWORKS			
	WP1	L delive	erables					•									D1.1												D	1.2	
		T2.1	RS		DATA ANALYSIS F	FOR MC	OBILITY R		STRUCT	ΓΙΟΝ																					\frown
WP2	MF	т2.2	AF										Ν	NULTI-	SOURCE	URBAN	N DATA N	MINING												_(Phd2
		T2.3						-																REAL-T	IME UR	BAN DA		NING			
	WP2	2 delive	erables							D2.1										D2.2									D	2.3	
		T3.1	AF	RESILIENCE ME MULTI-MODAL I																											
WP3	NEEF	тз.2	NEEF						EXT	REME V	VEATI	HER STR	RESS T	ESTS																_(Phd3
		т3.3																			STR/	ATEGI	S FOR	RESILIE	NCE IM	PROVEN	IENT				
	WP3	8 delive	erables														D3.1												D	3.2	
		T4.1	EZ										PLA	TFORM	1 DESIGN	N															\frown
WP4	AF	T4.2	AF					-												PLATE	ORM PI	ROTO	YPINO	6							Post
		T4.3	AF																									M ENGINEI EXTENSION		D	doc
	WP4	l delive	erables																						D4	.1					

PROMENADE: Zoom on RS2/WP2

WP2: Big data approaches for mobility reconstruction

• Task T2.1: Large-scale Mobile Phone Data Analysis for Urban Mobility Reconstruction

- leveraging Orange large-scale mobile phone passive data to
 - reconstruct spatio-temporal representations of travel demand, traffic indicators and user behaviors
- Task T2.2: Multi-Source Urban Data Mining
 - enhanced mobility reconstruction via multiple sources of large-scale urban data
 - joint processing of smart card data, loop detectors data, GPS data for complex pattern detection

Task T2.3: Real-time Urban Data Mining

- leveraging real-time data streams in machine learning tasks
 - for identifying and predicting mobility patterns related to atypical events

• Thesis title: Modélisation des dynamiques de mobilité urbaine fondée sur les données massives et multi-sources

position hold by Loic BONNETAIN (ENTPE) since Oct. 2018

RS2: multi-source real-time big data mining for augmented mobility understanding

RS2. Multi-source and real-time big data mining

18

- Jointly mining multi-source data: why?
 - reduce the inaccuracy and incompleteness of current mono-source estimations
 - cross-correlate different datasets to discover complex behaviors and multi-modality patterns
 - three research dimensions
 - individual vs. aggregate behaviors + typical vs. abnormal behaviors + offline vs online analyses

...interesting isolated approaches for mining mobile phone data to reconstruct itine-raries in urban areas recently appeared in the literature [Asgari et al, Darmian et al.]

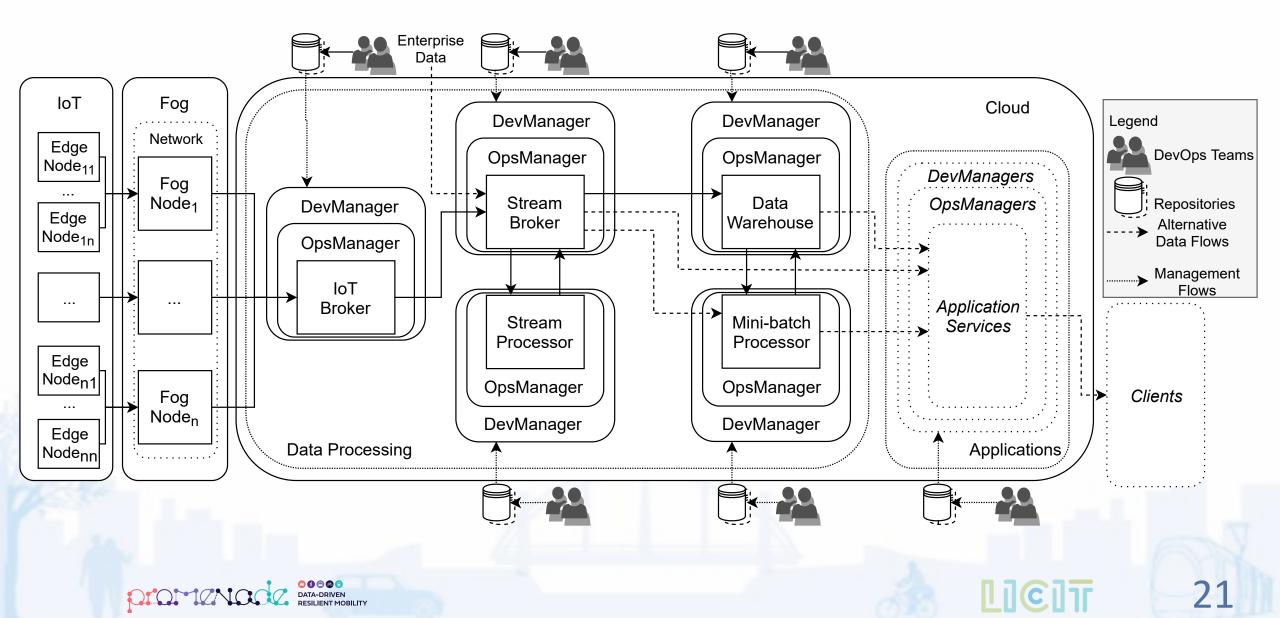
...need to explore big data fusion approaches to complement the information provided by such data, increasing their spatio-temporal granularity [Zhang et al.]

... urgent need to move towards novel real-time big data solutions

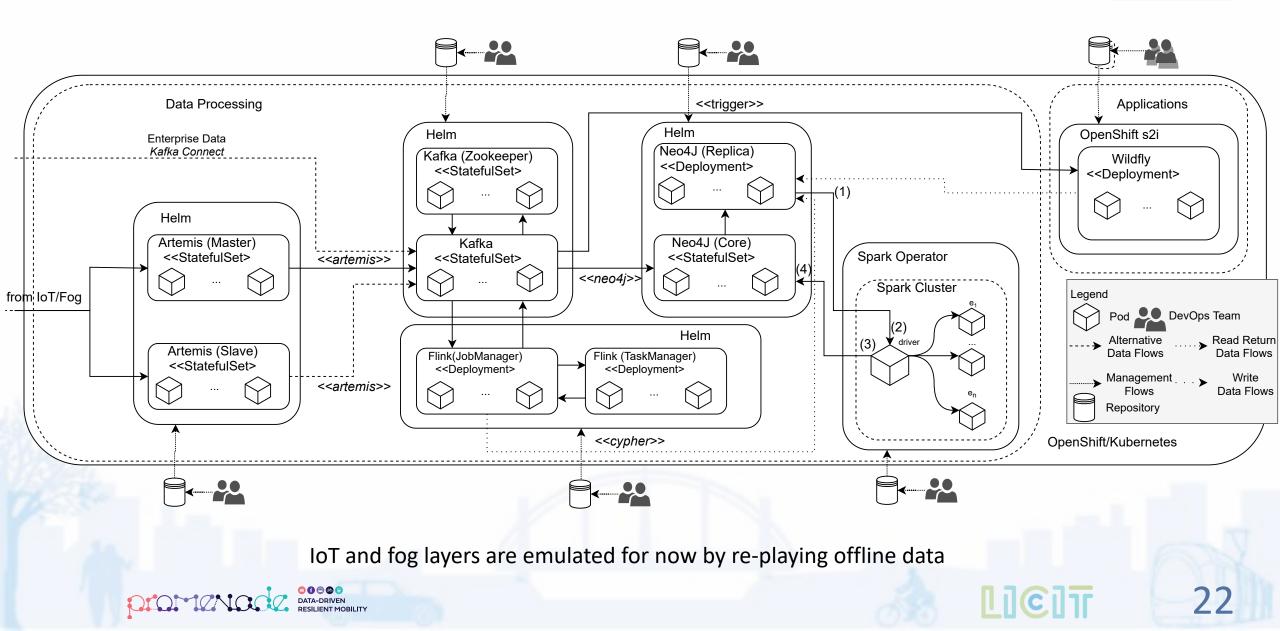
RS2/WP2: available data

Type of data	Description	City	Source	Status
Mobile Phone Data (CDR)	Hourly number of calls and SMS per Orange base station for one year (2017)	Lyon and Paris	Orange	Available
Mobile Phone Data	Multiple months (in 2017 and 2018) of anonymized individual network signaling data (for 2G, 3G and 4G antennas);	Lyon and Paris	Orange	Available
(Signaling data)	CANCAN data for 16 Mars-15 June 2019	,	0	
Mobile Phone Data	Multiple months (in 2017 and 2018) of anonymized individual Internet sessions reports			
	(number of down/up bytes per 6-minutes).	Lyon and Paris	Orange	Available
(Internet Session Data)	CANCAN data for 16 Mars-15 June 2019			
Mobile Phone Data	Antennas' positions and technology;	Lyon and Paris	Orange	Available
(Base stations)	Simplified theoretical model of geographical coverage	Lyon and Fans	Orange	Available
	GPS data collected every second for a population of approx. 30 users in 2017.			
GPS trajectories	Floating car Data (Coyote-Mediamobile) from Oct 2017 to Sept. 2018 for Lyon +	Lyon and Paris	LICIT, MediaMobile	Available
	from Mars to June 2019 for Paris and Lyon			
Traffic states (Vehicle counts)	Historical and real-time counting data from loop detectors; Position of Detectors	Lyon	Lyon Metropole	Agreed
Smart card data	AVL (automatic vehicle location) : Bus and tramway AFC (Automated fare collection): paper tickets + card	lyon	Sytral-Keolis	Available
	for 2017 in Lyon	Lyon	Sylial-Reolis	Available
Taxi GPS data	Two years of historical GPS traces from the taxi company Taxi-Radio (2011-2012)	Lyon	LICIT	Available
Real-time road events	Text messages related to events associated to the road network (real-time)	Lyon	Lyon Metropole	Agreed
Bike sharing system	Real-time and historical data on the usage of bike stations	Lyon	Lyon Metropole	Open access
	Enquêtes ménages déplacements de l'aire lyonnaise (2006, 15);		Lyon Metropole	Open access/
Census and travel data	Enquête Déplacements Régionale (2012-15) ;	Lyon and Paris		open access,
	Similar data are accessible for Paris		DRIEA	agreed
PrivaMov and Mobicampus	Aggregate and anonymized data collected via an Android tracking app (GPS trajectories,	Lyon	LAET, CITI	Agreed
datasets	battery consumption, phone usages for more than 10 users).	Lyon		0
Meteorological data	Historical meteorological data on French cities	Lyon and Paris	MeteoFrance	Agreed
LILLI - IKA NALA	RESILIENT MOBILITY			13

Gantt Diagram


Nov. 2019

Feb. 2019



								• •	. • ·	0																					modelling of ur networks	rban s	
						YI	EAR 1			:							YEA	AR 2									١	/EAR 3					
WPs	Leader	Tasks	Task Leader	т. т2	T3 T4	т5 т6	Т7	Т8	т9	т10 -	Т11 Т1	2 T1	.3 T14	4 T1	L5 T1	.6 T1	.7 T18	Т19 Т	20 1	Т21 Т22	T23	T24	T25	Т26	T27	T28 T	29 ТЗ	80 T31	Т32	Т33 Т3	34 ТЗ5	т36	
		T0.1	AF				·			I	<u>.</u>					PRO	DJECT MA	NAGEM	ENT										-	<u> </u>			
WP0	AF	T0.1	AF							:						P	ROJECT	DIFFUSIO	N														
	WPO) delive	erables				1				DO	.1									1	D0.2										D0.3	
		T1.1			YER MODELI AN TRANSPO																	COL							_				
WP1	AF	T1.2	AF					-			MULTI-L	AYER I	NETWO	ORK N	MINING	G																	Phd1
		T1.3	EZ							I											REA	AL-TIN	IE RESI	LIENCI	ASSE	SSMEN		IULTI-LA	YER N	ETWORKS			
	WP1	1 delive	erables															D	1.1													D1.2	
		T2.1	RS	MOBILE	PHONE DATA	ANALYSI	S FOR N	OBILITY	Y REC	ONSTRU	UCTION																						\frown
WP2	MF	T2.2	AF							•					MUL	LTI-SO	URCE UR	BAN DAT	'A MI	NING			000000000000000000000000000000000000000										Phd2
		т2.3								•																REAL-T	IME UR	BAN DA	ΤΑ ΜΙ	NING			\smile
	WP2	2 delive	erables	-							D2	1										D2.2										D2.3	
		T3.1	AF		NCE METRIC					•																							
WP3	NEEF	тз.2	NEEF								EXTREM	WEA	THER S	STRES	S TEST	rs																	Phd3
		тз.з								•													STRA	TEGIE	s for	RESILIE	NCE IM	PROVEN	/IENT				
	WP3	3 delive	erables															D	3.1													D3.2	
		T4.1	EZ							•				Р	PLATFO	ORM D	ESIGN																\frown
WP4	AF	T4.2	AF							-											Р	LATFO	ORM PF	ютот	YPING	i							Post
		T4.3	AF							I																				RM ENGINE EXTENSIO		ND	doc
	WP4	4 delive	erables							•																	D4	.1					\checkmark

High-level Architecture of PROMENADE

Technological choices for PROMENADE

3. ZOOM ON WP2 FIRST RESULTS (LATER BY LOIC BONNETAIN)

Back to Today's agenda

09:00-09:30 Coffee break

- **09:30-10:00** Introduction of the PROMENADE project (Angelo, LICIT Researcher)
- **10:00-10:30** Zonal-speed estimation via mobile phone data (Manon, LICIT PhD student)
- **10:30-11:00** Point on Orange data collection: problems and projects to come (Cezary, Dung, Orange Labs)
- 11:00-11:45 Mobile phone data analysis: state of the art and opportunities (Marco, CNR-Italy Researcher)
- **11:45-12:15** Social segregation with CDR 2007 data (Lino, INSEE researcher)

12:15-13:30 Lunch

- **13:30-14:00** Home detection with CDR 2007 data and Stop Detection with Signalling data (**Zbigniew & Bruno**, Orange Labs)
- **14:00-14:30** *Human mobility and epidemic spreading* (**Stefania**, Orange Labs)
- **14:30-15:00** *Presentation of current results related to PROMENADE WP2* (Loïc, LICIT PhD student)
- **15:00-15:30** Discussion on future directions for WP2 (all)
- **15:30-15:45** Point on recruitment of postdocs/PhD students/stages (all)
- **15:45-16:00** Debriefing and conclusion (all)

DIOI 2 CONCERNING CONCERNING

4. POINT ON PHD AND POSTDOC RECRUITEMENTS

Upcoming Recruitements

• PROMENADE (ANR JCJC)

- 18-months Postdoc
 - Starting from Winter/Spring 2020
 - Expected work: real-time multi-source data mining + platform development
 - Profile: machine learning / distributed systems
- 12-months Postdoc (from margin)
 - Starting from Spring/Summer 2021
 - Expected work : complex network modelling and mining, extreme weather simulation and resilience evaluation
 - Profile: complex networks / physics / traffic simulation

DISCRET (ANR FLASH JO2024)

- 18-months IFSTTAR/Orange Postdoc
 - Starting from jan-2020
 - Work: anomaly detection from mobile phone data in JO2024
 - Profile: data mining / applied maths / statistics
- 12-months UTT Postdoc

DECARACIÓN CONCERCIÓN DE CONCE

Upcoming Recruitements

MOBITIC (ANR PRCE)

- 24-months IFSTTAR/INSEE Postdoc (GRETTIA et/ou LICIT en co-encadrement)
 - Starting from October 2021, if proposal is accepted
- 36-months IFSTTAR/INSEE PhD (GRETTIA et/ou LICIT en co-encadrement)
 - Starting from October 2021, if proposal is accepted
- 12-months Orange **Postdoc**
- 18-months Geographie-Cité Postdoc
- **PROBABLY:** 36-months IFSTTAR LICIT/GRETTIA PhD Student (probably funded by IFSTTAR)
 - PhD subject submitted today to IFSTTAR
 - Starting from October 2021, if proposal is accepted

